

SCIENCE DIRECT®

Mendeleev Commun., 2007, 17, 222-223

Mendeleev Communications

Unusual structure of an *N*-phosphoryl-*N*'-isopropylthiourea chelate with the nickel(II) cation

Felix D. Sokolov,**a Sergey V. Baranov,* Nail G. Zabirov,* Dmitry B. Krivolapov,* Igor A. Litvinov,* Boulat I. Khairutdinov* and Rafael A. Cherkasov*

^a A. M. Butlerov Institute of Chemistry, Kazan State University, 420008 Kazan, Russian Federation. Fax: +7 843 254 3734; e-mail: felix.sokolov@ksu.ru

^b A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Centre of the Russian Academy of Sciences, 420088 Kazan, Russian Federation

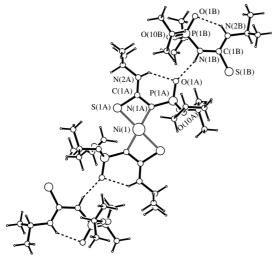
DOI: 10.1016/j.mencom.2007.06.013

The reaction of the potassium salt of N-phosphorylated thiourea $Pr^iN'HC(S)NHP(O)(OPr^i)_2$ (HL) with the Ni^{II} cation leads to the complex $[NiL_2(HL)_2]$; according to X-ray analysis, two neutral HL molecules are coordinated in the second sphere of the planar 1,3-N,S-chelate $[NiL_2]$ via (HL) PNH···O=P (NiL₂) hydrogen bonds.

The competitive coordination of polyfunctional ligands with metal cations is of interest in modern coordination chemistry. Recently, we found that N-phosphorylthioureas RNHC(S)-NHP(O)(OPri)2 (R = Ph, cyclohexyl) can form 1,3-N,S-chelates with NiII, PdII and CuII cations. The 1,5-O,S-coordination of such a type of ligands is not favourable in these cases due to higher crystal field stabilization energies for the square-planar d^8 and d^9 complexes [M{RNHC(S)NP(O)(OPri)2-N,S}2] caused by stronger ligand field of the amide N atom in comparison with the P=O oxygen atom. The second stabilising factor for 1,3-N,S-chelates is the formation of intramolecular NH···O=P hydrogen bonds.

The synthesis of a Ni^{II} complex with thiourea PrⁱNHC(S)-NHP(O)(OPrⁱ)₂ (HL) has led to an interesting result: light violet crystals corresponding to the stoichiometry of [NiL₂(HL)₂] **1** were isolated from the reaction mixture. The crystals are readily soluble in benzene and chlorinated alkanes and insoluble in water and n-hexane. The stoichiometry of complex **1** is preserved after multiple crystallizations from benzene and dichloromethane.

[†] Thiourea HL was prepared according to the previously described method.⁵ *Synthesis of [NiL₂(HL)₂]:* a suspension of HL (1.410 g, 5 mmol) in aqueous ethanol (20 ml) was mixed with an ethanol solution of potassium hydroxide (0.28 g, 5 mmol). An aqueous (20 ml) solution of Ni(NO₃)₂·6H₂O (0.815 g, 2.8 mmol) was added dropwise with vigorous stirring to the resulting potassium salt. The mixture was stirred at room temperature for 5 h and left overnight. The resulting complex was extracted with CH₂Cl₂, washed with water and dried with anhydrous MgSO₄. The solvent was removed *in vacuo*. The precipitate was isolated from CH₂Cl₂ by *n*-hexane.


Spectral analyses ‡ and X-ray data § undoubtedly indicate the 1,3-N,S-type of coordination by two anionic ligand molecules in this case (Scheme 1). Only the examples of 1,5-O,S-coordination of the thiourea HL in [ML₂] chelates with cobalt(II) and zinc(II) cations have been reported earlier.

One could presume that complex **1** should contain a six-coordinated Ni^{II} cation. Indeed, such a type of the square-bipyramidal complexes $[M(QH)_2Q_2]$ of thioamide $PhC(S)-NHP(O)(OPr^i)_2$ (HQ) with Ni^{II} and Co^{II} cations was isolated and investigated by X-ray analysis.⁶ The $[Q^-]$ ligands in these complexes exhibit a 1,5-O,S-coordination with the central ion in the equatorial positions of the bipyramide, while neutral ligands [HQ] are coordinated via oxygen atoms of the phosphoryl group in axial positions.

However, the unusual 1,3-N,S-coordination of the thiourea ligand [L⁻] leads to interesting changes in complex structure. X-ray analysis has clearly shown that neutral ligands in adduct 1 do not interact directly with the metal ion and being in the second sphere interact *via* hydrogen bonds between the P(O)NH protons of free ligands and the P=O oxygen atoms of coordinated ligand (Figure 1). The strong ligand field of 1,3-N,S-coordinated thiourea moieties, stabilising the square-planar low-spin complex species, does not allow the axial coordination of the HL molecules.

 ‡ The IR spectra (Nujol) were recorded with a Specord M-80 spectrometer in the range 400–3600 cm $^{-1}$. The NMR spectra were obtained on a Varian Unity-300 NMR spectrometer at 25 °C. The $^{1}\mathrm{H}$ and $^{31}\mathrm{P}\{^{1}\mathrm{H}\}$ NMR spectra were recorded at 299.948 and 121.420 MHz, respectively. Chemical shifts are reported with reference to SiMe $_{4}$ ($^{1}\mathrm{H}$) and $\mathrm{H}_{3}\mathrm{PO}_{4}$ ($^{31}\mathrm{P}\{^{1}\mathrm{H}\}$). The mass spectra were measured on a TRACE MS Finnigan MAT instrument. The electron ionisation energy was 70 eV. The substance was injected directly into the ion source at 150 °C. Heating was carried out in a programmed mode from 35–200 °C at a rate of 35 K min $^{-1}$. Elemental analyses were performed on a Perkin-Elmer 2400 CHN micro-analyser.

For [NiL₂(HL)₂]: yield 0.784 g (53%), mp 82 °C. ¹H NMR (CDCl₃) δ : 1.16 (d, 12H, Me [PrⁱN, L], ³ $J_{\rm HH}$ 6.5 Hz), 1.33–1.47 (m, 48H, Me [PrⁱO + PrⁱN]), 1.58 (d, 12H, Me [PrⁱO, L], ³ $J_{\rm HH}$ 6.2 Hz), 3.91 (d sept., 2H, [NCH, L], ³ $J_{\rm CHCH}$ 6.5 Hz, ³ $J_{\rm CHNH}$ 8.2 Hz), 4.53–4.72 (overlapped m, 10H, [NCH + OCH]), 6.86 (br. s, 2H, [NHP, HL]), 8.33 (d, 2H, [NHPrⁱ, L], ³ $J_{\rm CHNH}$ 8.2 Hz), 10.36 (br. s, [NHPrⁱ, HL]). ³¹P{¹H} NMR (CDCl₃) δ : -3.8 (HL), 2.9 (L). IR (ν /cm⁻¹): 1016 (POC), 1200 (P=O), 1560 (SCN), 3176, 3232 (NH). EI-MS, m/z (%): 621 (5) [M - 2HL]⁺. Found (%): C, 40.59; H, 7.60; N, 9.42. Calc. for C₄₀H₉₀N₈O₁₂P₄S₄Ni (1184.39) (%): C, 40.51; H, 7.65; N, 9.45.

 $\begin{array}{lll} \textbf{Figure 1} & \textbf{Molecular structure and hydrogen bonding of complex } [\text{NiL}_2(\text{HL})_2] \\ \textbf{1.} & \textbf{Selected bond lengths (Å) and angles (°): Ni(1)-S(1A) 2.221(2),} \\ \textbf{Ni(1)-N(1A) 1.900(2), C(1A)-S(1A) 1.726(3), C(1A)-N(1A) 1.342(3),} \\ \textbf{C(1A)-N(2A) 1.307(3), P(1A)-N(1A) 1.636(2), P(1A)-O(1A) 1.465(2),} \\ \textbf{C(1B)-S(1B) 1.667(3), C(1B)-N(1B) 1.381(4), C(1B)-N(2B) 1.317(3),} \\ \textbf{N(1B)-P(1B) 1.654(3), O(1B)-P(1B) 1.455(2); C(1A)-S(2A)-Ni(1) 77.46(11),} \\ \textbf{N(1A)-C(1A)-S(1A) 108.7(2), S(1A)-Ni(1)-N(1A) 74.36(8).} \end{array}$

The IR spectrum of 1 contains two absorption bands assigned to NH at 3176 and 3232 cm⁻¹, which are characteristic of the NH-stretching vibrations of PrⁱNH and NHP(S) groups, respectively. At the same time, the P=O absorption band practically does not change the position when compared to the free ligand. The lack of the shift of a P=O band in the IR spectrum is characteristic of the 1,3-N,S-chelate formation.²

There are two singlet ^{31}P signals of identical intensities at δ –3.9 and 2.8 ppm observed for **1**. The signal at δ –3.9 ppm is in the region characteristic of neutral N-phosphorylated thio-amides and thioureas, whereas the other signal corresponds to the amidophosphate environment in complexes of *N*-acylamidophosphate anions. The ^{1}H NMR spectrum also contains the double set of signals for metal-coordinated and unbound ligand molecules. The assignment of ^{1}H NMR signals was proved by ^{1}H COSY spectra. The slow (in an NMR scale) exchange between neutral and anionic forms of the ligand in CDCl₃ has been found by ^{1}H NOESY experiment.

According to X-ray analysis data, a molecule of **1** is centrosymmetric in a crystal. The Ni^{II} atom and all 24 atoms of the N-C(S)-N-P=O backbones of [L-] and [HL] belong to the same

§ Crystals of C₂₀H₄₄N₄NiO₆P₂S₂ [or 2(C₁₀H₂₃N₂O₃PS)] are monoclinic, space group *C2lc* (no. 15); M=1186.05; a=19.451(18), b=9.557(9) and c=34.85(2) Å, $\beta=99.17(7)^\circ$, V=6396(9) Å³, Z=4, $d_{\rm calc}=1.232$ g cm⁻³, F(000)=2536, $\mu=0.588$ mm⁻¹. Reflections collected/unique ($R_{\rm int}$): 6224/6224 [0.0623]; $R_1=0.04317$, $wR_2=0.112$ [I>2σ(I)].

The X-ray diffraction data for the complex [NiL₂(HL)₂] were collected on an Enraf-Nonius CAD4 automatic diffractometer using graphite monochromated MoK α (0.71073 Å) radiation. The stability of crystals and experimental conditions was checked every 2 h using three control reflections, while the orientation was monitored every 200 reflections by centering two standards. No significant decay was observed. The structure was solved by a direct method using the SIR 7 program and refined by the full-matrix least-squares using the SHELXL97 program. All non-hydrogen atoms were refined anisotropically. The hydrogen atoms were calculated and refined as riding atoms. All calculations were performed using the WinGX 8 program. Cell parameters, data collection and data reduction were performed on an Alpha Station 200 computer using the MoLEN 9 program. All figures were made using the PLATON 10 program.

CCDC 625741 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif. For details, see 'Notice to Authors', *Mendeleev Commun.*, Issue 1, 2007.

plane. The structure of the chelate core $[NiL_2]$ is similar to those of the other 1,3-N,S-chelates of Ni^{II} and $Pd^{II}.^{2(a)}$ The central ion has got *trans*-square-planar environment NiN_2S_2 . Valent angles at Ni(1) and S(1A) atoms in four-membered M–S–C–N metallocycles are sufficiently sharper in comparison with six-membered chelate rings.³

As expected, a comparison of interatomic distances for [L⁻] and [HL] moieties has shown a lengthening of CS and a shortening of CN bonds upon complexation, while minor changes have been observed for the P–N and P=O bond values.

The P=O oxygen atoms of [L⁻] moieties form intramolecular hydrogen bonds with the PriNH protons and an intermolecular hydrogen bond with HNP(O) of neutral [HL] ligand. The [HL] moieties are in a typical of N-phosphorylthioureas flatten syn,syn-conformation of the N–C–N–P–O backbone, stabilised by the intramolecular hydrogen bond PriNH···O=P. The parameters of hydrogen bonds are the following: N(1B)–H(1B)···O(1A) [d(D–H) 0.86 Å, d(H···O) 2.05 Å, d(N···O) 2.834(4) Å, \triangle NHO 150°], N(2A)–H(2A)···O(1A) [d(D–H) 0.86 Å, d(H···O) 2.07 Å, d(N···O) 2.773(4) Å, \triangle NHO 138°], N(1B)–H(1B)···O(1B) [d(D–H) 0.86 Å, d(H···O) 2.05 Å, d(N···O) 2.771(4) Å, \triangle NHO 141°].

According to the CCDC database (CSD version 5.27), these interactions of the *N*-phosphorylthiourea chelates with the neutral ligand have not been described. The above H-bonding pattern is possible only for 1,3-N,S-chelates of *N*-phosphorylthioureas; thus, it could be used for the design of thiourea-based receptor molecules capable of selectively binding 1,3-N,S-complexes from a mixture with 1,5-O,S-analogues.

This work was supported by the Russian Foundation for Basic Research (grant nos. 03-03-32372-a and 03-03-96225-r2003tatarstan_a) and the joint programme of CRDF and the Russian Ministry of Education (BHRE 2004 Y2-C-07-02, grant no. REC-007).

References

- (a) A. D. Garnovskii, D. A. Garnovskii, I. S. Vasilchenko, A. S. Burlov, A. P. Sadimenko and I. D. Sadekov, *Usp. Khim.*, 1997, 66, 434 (*Russ. Chem. Rev.*, 1997, 66, 389); (b) L. M. Blanco, A. D. Garnovskii, D. A. Garnovskii, B. I. Kharisov, M. A. Mendez-Rojas and I. S. Vasilchenko in *Synthetic Coordination and Organometallic Chemistry*, eds. A. D. Garnovskii and B. I. Kharisov, Marcel Dekker, New York–Basel, 2003.
- 2 (a) F. D. Sokolov, N. G. Zabirov, L. N. Yamalieva, V. G. Shtyrlin, R. R. Garipov, V. V. Brusko, A. Yu. Verat, S. V. Baranov, P. Mlynarz, T. Glowiak and H. Kozlowski, *Inorg. Chim. Acta*, 2006, 359, 2087; (b) R. R. Garipov, V. G. Shtyrlin, D. A. Safin, Y. I. Zyavkina, F. D. Sokolov, A. L. Konkin, A. V. Aganov and A. V. Zakharov, *Chem. Phys.*, 2006, 320, 59.
- 3 (a) T. Q. Ly and J. D. Woollins, Coord. Chem. Rev., 1998, 176, 451; (b) V. V. Skopenko, V. M. Amirkhanov, T. Yu. Sliva, I. S. Vasilchenko, E. L. Anpilova and A. D. Garnovskii, Usp. Khim., 2004, 73, 797 (Russ. Chem. Rev., 2004, 73, 737); (c) F. D. Sokolov, V. V. Brusko, N. G. Zabirov and R. A. Cherkasov, Curr. Org. Chem., 2006, 10, 27.
- 4 D. A. Safin, F. D. Sokolov, N. G. Zabirov, V. V. Brusko, D. B. Krivolapov, I. A. Litvinov and R. A. Cherkasov, *Polyhedron*, 2006, 25, 3330.
- F. D. Sokolov, D. A. Safin, N. G. Zabirov, P. V. Zotov and R. A. Cherkasov, Zh. Obshch. Khim., 2005, 75, 2009 (Russ. J. Gen. Chem., 2005, 75, 1919).
- 6 F. D. Sokolov, D. A. Safin, N. G. Zabirov, L. N. Yamalieva, D. B. Krivolapov and I. A. Litvinov, *Mendeleev Commun.*, 2004, 51.
- 7 A. Altomare, G. Cascarano, C. Giacovazzo and D. Viterbo, Acta Crystallogr., Sect. A, 1991, 47, 744.
- 8 L. J. Farrugia, J. Appl. Crystallogr., 1999, 32, 837.
- 9 L. H. Straver and A. J. Schierbeek, MoLEN. Structure Determination System, Nonius B.V. Delft, The Netherlands, 1994, vols. 1, 2.
- 10 A. L. Spek, Acta Crystallogr., Sect. A, 1990, 46, 34.

Received: 20th February 2007; Com. 07/2879